IKS PVD Technology (Shenyang) Co.,Ltd
Home > Knowledge > Content

Product Categories

Contact Information

  • IKS PVD Technology (Shenyang) Co.,Ltd
  • Tel:+86-24-89635131
  • Fax:+86-24-89335192
  • Email:IKS.PVD@foxmail.com
  • ADD:No.83-42 Puhe Road, Shenbei New District, Shenyang City, Liaoning Province, China
  • Applications Of O-ring
    Dec 28, 2017

    An O-ring, also known as a packing, or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, creating a seal at the interface.


    The O-ring may be used in static applications or in dynamic applications where there is relative motion between the parts and the O-ring. Dynamic examples include rotating pump shafts and hydraulic cylinder pistons.

    O-rings are one of the most common seals used in machine design because they are inexpensive, easy to make, reliable and have simple mounting requirements. They can seal tens of megapascals (thousands of psi) of pressure.


    Manufacturing

    O-rings can be produced by extrusion, injection molding, pressure molding or transfer molding


    Typical applications

    Successful O-ring joint design requires a rigid mechanical mounting that applies a predictable deformation to the O-ring. This introduces a calculated mechanical stress at the O-ring contacting surfaces. As long as the pressure of the fluid being contained does not exceed the contact stress of the O-ring, leaking cannot occur. Fortunately, the pressure of the contained fluid transfers through the essentially incompressible O-ring material, and the contact stress rises with increasing pressure. For this reason, an O-ring can easily seal high pressure as long as it does not fail mechanically. The most common failure is extrusion through the mating parts.


    The seal is designed to have a point contact between the O-ring and sealing faces. This allows a high local stress, able to contain high pressure, without exceeding the yield stress of the O-ring body. The flexible nature of O-ring materials accommodates imperfections in the mounting parts. But it is still important to maintain good surface finish of those mating parts, especially at low temperatures where the seal rubber reaches its glass transition temperature and becomes increasingly crystalline. Surface finish is also especially important in dynamic applications. A surface finish that is too rough will abrade the surface of the O-ring, and a surface that is too smooth will not allow the seal to be adequately lubricated by a fluid film.


    Vacuum applications

    In vacuum applications, the permeability of the material makes point contacts quite useless. Instead, higher mounting forces are used and the ring fills the whole groove. Also, round back-up rings are used to save the ring from excessive deformation Because the ring feels the ambient pressure and the partial pressure of gases only at the seal, their gradients will be steep near the seal and shallow in the bulk (opposite to the gradient of the contact stress. High-vacuum systems below 10-9 Torr use copper or nickel O-rings. Also, vacuum systems that have to be immersed in liquid nitrogen use indium O-rings, because rubber becomes hard and brittle at low temperatures.


    High temperature applications

    In some high-temperature applications, O-rings may need to be mounted in a tangentially compressed state, to compensate for the Gow-Joule effect.