IKS PVD Technology (Shenyang) Co.,Ltd
Home > Knowledge > Content

Product Categories

Contact Information

  • IKS PVD Technology (Shenyang) Co.,Ltd
  • Tel:+86-24-89635131
  • Fax:+86-24-89335192
  • Email:IKS.PVD@foxmail.com
  • ADD:No.83-42 Puhe Road, Shenbei New District, Shenyang City, Liaoning Province, China
  • Technics Of Nitriding
    Dec 29, 2017

    Nitriding is a heat treating process that diffuses nitrogen into the surface of a metal to create a case-hardened surface. These processes are most commonly used on low-carbon, low-alloy steels. They are also used on medium and high-carbon steels, titanium, aluminium and molybdenum. In 2015, nitriding was used to generate unique duplex microstructure (Martensite-Austenite, Austenite-ferrite), known to be associated with strongly enhanced mechanical properties. 

    Typical applications include gears, crankshafts, camshafts, cam followers, valve parts, extruder screws, die-casting tools, forging dies, extrusion dies, firearm components, injectors and plastic-mold tools.


    Processes

    The processes are named after the medium used to donate. The three main methods used are: gas nitriding, salt bath nitriding, and plasma nitriding.


    Gas nitriding

    In gas nitriding the donor is a nitrogen rich gas, usually ammonia (NH3), which is why it is sometimes known as ammonia nitriding. When ammonia comes into contact with the heated work piece it dissociates into nitrogen and hydrogen. The nitrogen then diffuses onto the surface of the material creating a nitride layer. This process has existed for nearly a century, though only in the last few decades has there been a concentrated effort to investigate the thermodynamics and kinetics involved. Recent developments have led to a process that can be accurately controlled. The thickness and phase constitution of the resulting nitriding layers can be selected and the process optimized for the particular properties required.


    The advantages of gas nitriding over the other variants are:

    ● Precise control of chemical potential of nitrogen in the nitriding atmosphere by controlling gas flow rate of nitrogen and oxygen.

    ● All round nitriding effect (can be a disadvantage in some cases, compared with plasma nitriding).

    ● Large batch sizes possible - the limiting factor being furnace size and gas flow.

    ● With modern computer control of the atmosphere the nitriding results can be closely controlled.

    ● Relatively low equipment cost - especially compared with plasma.


    The disadvantages of gas nitriding are:

    ● Reaction kinetics heavily influenced by surface condition - an oily surface or one contaminated with cutting fluids will deliver poor results.

    ● Surface activation is sometimes required to treat steels with a high chromium content - compare sputtering during plasma nitriding.

    ● Ammonia as nitriding medium - though not especially toxic it can be harmful when inhaled in large quantities. Also, care must be taken when heating in the presence of oxygen to reduce the risk of explosion.


    Salt bath nitriding

    In salt bath nitriding the nitrogen donating medium is a nitrogen-containing salt such as cyanide salt. The salts used also donate carbon to the workpiece surface making salt bath a nitrocarburizing process. The temperature used is typical of all nitrocarburizing processes: 550–570 °C. The advantages of salt nitriding is that it achieves higher diffusion in the same period of time compared to any other method.


    The advantages of salt nitriding are:

    ● Quick processing time - usually in the order of 4 hours or so to achieve

    ● Simple operation - heat the salt and workpieces to temperature and submerge until the duration has transpired.


    The disadvantages are:

    ● The salts used are highly toxic - Disposal of salts are controlled by stringent environmental laws in western countries and has increased the costs involved in using salt baths. This is one of the most significant reasons the process has fallen out of favor in recent decades.

    ● Only one process possible with a particular salt type - since the nitrogen potential is set by the salt, only one type of process is possible.


    Plasma nitriding

    Plasma nitriding, also known as ion nitriding, plasma ion nitriding or glow-discharge nitriding, is an industrial surface hardening treatment for metallic materials.


    In plasma nitriding, the reactivity of the nitriding media is not due to the temperature but to the gas ionized state. In this technique intense electric fields are used to generate ionized molecules of the gas around the surface to be nitrided. Such highly active gas with ionized molecules is called plasma, naming the technique. The gas used for plasma nitriding is usually pure nitrogen, since no spontaneous decomposition is needed (as is the case of gas nitriding with ammonia). There are hot plasmas typified by plasma jets used for metal cutting, welding, cladding or spraying. There are also cold plasmas, usually generated inside vacuum chambers, at low pressure regimes.


    Usually steels are beneficially treated with plasma nitriding. This process permits the close control of the nitrided microstructure, allowing nitriding with or without compound layer formation. Not only is the performance of metal parts enhanced, but working lifespans also increase, and so do the strain limit and the fatigue strength of the metals being treated. For instance, mechanical properties of austenitic stainless steel like resistance to wear can be significantly augmented and the surface hardness of tool steels can be doubled.


    A plasma nitrided part is usually ready for use. It calls for no machining, or polishing or any other post-nitriding operations. Thus the process is user-friendly, saves energy since it works fastest, and causes little or no distortion.


    Plasma nitriding is often coupled with physical vapor deposition (PVD) process and labeled Duplex Treatment, with enhanced benefits. Many users prefer to have a plasma oxidation step combined at the last phase of processing to produce a smooth jetblack layer of oxides which is resistant to wear and corrosion.


    Since nitrogen ions are made available by ionization, differently from gas or salt bath, plasma nitriding efficiency does not depend on the temperature. Plasma nitriding can thus be performed in a broad temperature range, from 260 °C to more than 600 °C.For instance, at moderate temperatures (like 420 °C), stainless steels can be nitrided without the formation of chromium nitride precipitates and hence maintaining their corrosion resistance properties.


    In the plasma nitriding processes, nitrogen gas (N2) is usually the nitrogen carrying gas. Other gasses like hydrogen or Argon are also used. Indeed, Argon and H2 can be used before the nitriding process during the heating of the parts to clean the surfaces to be nitrided. This cleaning procedure effectively removes the oxide layer from surfaces and may remove fine layers of solvents that could remain. This also helps the thermal stability of the plasma plant, since the heat added by the plasma is already present during the warm up and hence once the process temperature is reached the actual nitriding begins with minor heating changes. For the nitriding process H2 gas is also added to keep the surface clear of oxides. This effect can be observed by analysing the surface of the part under nitriding.