News

Home>News>Content

PVD Materials

Dec 28, 2017

PVD or Physical Vapor Deposition Materials comprise a range of metals that can be used in sputtering magnetrons to create thin films and coatings. Angstrom Sciences also offers a comprehensive selection of high-purity vacuum deposition materials including:


Aluminum

Aluminum Copper

Aluminum Copper          

Tungsten

Aluminum Nitride

Aluminum Oxide

Aluminum Silicon

Antimony

Barium

Barium Ferrite

Barium Fluoride

Barium Strontium 

Titanate

Barium Titanate

Barium Oxide

Beryllium

Bismuth

Bismuth Lanthanum 

Titanium

Bismuth Strontium Calcium

Bismuth Strontium Titanate

Bismuth Titanium Oxide

Bismuth Trioxide

Boron

Boron Carbide

Boron Nitride

Cadmium Fluoride

Cadmium Oxide

Cadmium Selenide

Cadmium Sulfide

Cadmium Telluride

Calcium Fluoride

Calcium Oxide

Calcium Silicate

Calcium Titanate

Carbon (Graphite)

Carbon Steel

Cerium

Cerium Oxide

Chromium

Chromium Boride

Chromium Oxide

Chromium Silicide

Cobalt

Cobalt Chromium

Cobalt Oxide

Cobalt Silicide

Cobalt Zirconium

Copper

Copper Sulfide

Copper Oxide

Dysprosium

Erbium

Europium

Gallium

Gallium Arsenide

Gallium Oxide

Gadolinium

Germanium

Germanium Nitride

Germanium Oxide

Gold

Gold Germanium

Gold Palladium

Gold Tin

Gold Zinc

Hafnium

Hafnium Carbide

Hafnium Nitride

Hafnium Oxide

Holmium

Inconel

Indium

Indium Oxide

Indium Tin Oxide

Iridium

Iron

Iron Oxide

Lead

Lanthanum

Lanthanum Aluminate

Lanthanum Boride

Lanthanum Oxide

Lanthanum Strontium 

Cobalt Oxide

Lanthanum Manganese 

Oxide

Lead Oxide

Lead Titanate

Lead Zirconium Titanate 

Oxide

Lithium

Lithium Carbonate

Lithium Cobalt Oxide

Lithium Niobate

Lithium Phosphate

Lithium Tantalate

Magnesium

Magnesium Fluoride

Magnesium Monoxide

Magnesium Oxide

Manganese

Molybdenum                    

Molybdenum 

Disulfide            

Molybdenum Oxide

Molybdenum Selenide

Molybdenum Silicide

Molybdenum Sulfide

Neodymium                       

Neodymium Gallium Oxide

Neodymium Iron Boride

Nickel

Nickel Chromium

Nickel Cobalt

Nickel Oxide

Nickel Silicide

Nickel Vanadium

Niobium

Niobium Oxide

Palladium

Platinum

Praseodymium

Pryolytic Boron Nitride

Rhenium

Rhodium

Ruthenium

Samarium

Samarium Cobalt

Scandium

Scandium Oxide

Selenium

Silicon

Silicon Carbide

Silicon Dioxide

Silicon Monoxide

Silicon Nitride

Silver

Silver Oxide

Strontium Bismuth Niobium

Oxide

Strontium Bismuth Tantalum

Niobium

Strontium-doped Lanthanum

Strontium Oxide

Strontium Titanate

Tantalum

Tantalum Carbide

Tantalum Nitride

Tantalum Oxide

Tantalum Silicide

Tantalum Sulfide

Tellurium

Terbium

Terbium Iron

Thallium

Thallium Oxide

Thorium Fluoride

Thorium Oxide

Tin

Tin Oxide

Titanium

Titanium Boride

Titanium Carbide

Titanium Nitride

Titanium Oxide

Titanium Silicide

Titanium Sulfide

Tungsten

Tungsten Silicide

Tungsten Sulfide

Tungsten Titanium

Vanadium

Vanadium Pent Oxide

Yttrium

Yttrium Barium Copper Oxide

Yttrium Oxide

Zinc

Zinc Oxide                             

Zinc Selenide

Zinc Sulfide

Zirconium                              

Zirconium Nitride                    

Zirconium Oxide

Zirconium Silicate

Zirconium Oxide Yttrium Oxide


There are three factors that influence the quality and functionality of a film deposited by Physical Vapor Deposition (PVD): the quality and performance of the deposition source, the properties and structure of the deposition materials, and the intrinsic performance and layout of the deposition system and its’ associated peripherals.  

Not all materials are equivalent in these processes as the chemical composition of the source material is only the starting point of a robust, application-specific process.  Impurity levels, grain size, crystallographic structure/texture are but a few of the considerations that go into uniquely tailoring the structure of a suitable deposition structure.  


Which PVD Method To Use?

Ion Plating